Dysgenesis of Enteroendocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations

نویسندگان

  • Natalie A. Terry
  • Randall A. Lee
  • Erik R. Walp
  • Klaus H. Kaestner
  • Catherine Lee May
چکیده

OBJECTIVES Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteroendocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in ARX-related disorders, we sought to characterize the enteroendocrine population in human tissue of an ARX mutation and in a mouse model of the corresponding polyalanine expansion (Arx). METHODS Immunohistochemistry and quantitative real-time polymerase chain reaction were the primary modalities used to characterize the enteroendocrine populations. Daily weights were determined for the growth curves, and Oil-Red-O staining on stool and tissue identified neutral fats. RESULTS An expansion of 7 alanines in the first polyalanine tract of both human ARX and mouse Arx altered enteroendocrine differentiation. In human tissue, cholecystokinin, glucagon-like peptide 1, and somatostatin populations were reduced, whereas the chromogranin A population was unchanged. In the mouse model, cholecystokinin and glucagon-like peptide 1 populations were also lost, although the somatostatin-expressing population was increased. The ARX protein was present in human tissue, whereas the Arx protein was degraded in the mouse intestine. CONCLUSIONS ARX/Arx is required for the specification of a subset of enteroendocrine cells in both humans and mice. Owing to protein degradation, the Arx mouse recapitulates findings of the intestinal Arx null model, but is not able to further the study of the differential effects of the ARX protein on its transcriptional targets in the intestine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An epilepsy-related ARX polyalanine expansion modifies glutamatergic neurons excitability and morphology without affecting GABAergic neurons development.

Epileptic encephalopathies comprise a heterogeneous group of severe infantile disorders for which the pathophysiological basis of epilepsy is inaccurately clarified by genotype-phenotype analysis. Because a deficit of GABA neurons has been found in some of these syndromes, notably in patients with X-linked lissencephaly with abnormal genitalia, epilepsy was suggested to result from an imbalance...

متن کامل

Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division

BACKGROUND Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe m...

متن کامل

Aristaless-Related Homeobox Plays a Key Role in Hyperplasia of the Pancreas Islet α–Like Cells in Mice Deficient in Proglucagon-Derived Peptides

Defects in glucagon action can cause hyperplasia of islet α-cells, however, the underlying mechanisms remain largely to be elucidated. Mice homozygous for a glucagon-GFP knock-in allele (Gcg(gfp/gfp) ) completely lack proglucagon-derived peptides and exhibit hyperplasia of GFP-positive α-like cells. Expression of the transcription factor, aristaless-related homeobox (ARX), is also increased in ...

متن کامل

A polyalanine tract expansion in Arx forms intranuclear inclusions and results in increased cell death

A growing number of human disorders have been associated with expansions of a tract of a single amino acid. Recently, polyalanine (polyA) tract expansions in the Aristaless-related homeobox (ARX) protein have been identified in a subset of patients with infantile spasms and mental retardation. How alanine expansions in ARX, or any other transcription factor, cause disease have not been determin...

متن کامل

ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation.

Investigation of a critical region for an X-linked mental retardation (XLMR) locus led us to identify a novel Aristaless related homeobox gene (ARX ). Inherited and de novo ARX mutations, including missense mutations and in frame duplications/insertions leading to expansions of polyalanine tracts in ARX, were found in nine familial and one sporadic case of MR. In contrast to other genes involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2015